Constrained Multi-Task Learning for Automated Essay Scoring

نویسندگان

  • Ronan Cummins
  • Meng Zhang
  • Ted Briscoe
چکیده

Supervised machine learning models for automated essay scoring (AES) usually require substantial task-specific training data in order to make accurate predictions for a particular writing task. This limitation hinders their utility, and consequently their deployment in real-world settings. In this paper, we overcome this shortcoming using a constrained multi-task pairwisepreference learning approach that enables the data from multiple tasks to be combined effectively. Furthermore, contrary to some recent research, we show that high performance AES systems can be built with little or no task-specific training data. We perform a detailed study of our approach on a publicly available dataset in scenarios where we have varying amounts of task-specific training data and in scenarios where the number of tasks increases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Multi-task Learning in Automated Assessment

Grammatical error detection and automated essay scoring are two tasks in the area of automated assessment. Traditionally these tasks have been treated independently with different machine learning models and features used for each task. In this paper, we develop a multi-task neural network model that jointly optimises for both tasks, and in particular we show that neural automated essay scoring...

متن کامل

Investigating neural architectures for short answer scoring

Neural approaches to automated essay scoring have recently shown state-of-theart performance. The automated essay scoring task typically involves a broad notion of writing quality that encompasses content, grammar, organization, and conventions. This differs from the short answer content scoring task, which focuses on content accuracy. The inputs to neural essay scoring models – ngrams and embe...

متن کامل

Prognosis Essay Scoring and Article Relevancy Using Multi-Text Features and Machine Learning

This study develops a model for essay scoring and article relevancy. Essay scoring is a costly process when we consider the time spent by an evaluator. It may lead to inequalities of the effort by various evaluators to apply the same evaluation criteria. Bibliometric research uses the evaluation criteria to find relevancy of articles instead. Researchers mostly face relevancy issues while searc...

متن کامل

On the Automatic Scoring of Handwritten Essays

Automating the task of scoring short handwritten student essays is considered. The goal is to assign scores which are comparable to those of human scorers by coupling two AI technologies: optical handwriting recognition and automated essay scoring. The test-bed is that of essays written by children in reading comprehension tests. The process involves several image-level operations: removal of p...

متن کامل

Automated Scoring of Handwritten Essays Based on Latent Semantic Analysis

Handwritten essays are widely used in educational assessments, particularly in classroom instruction. This paper concerns the design of an automated system for performing the task of taking as input scanned images of handwritten student essays in reading comprehension tests and to produce as output scores for the answers which are analogous to those provided by human scorers. The system is base...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016